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Abstract—Smart farming is a promising application domain
for the Internet of Things, which helps farmers to reduce operat-
ing costs and increase their profit with automation. Bird or raven
deterrence is one example of the potential use of the Internet of
Things paradigm leading to smart farming applications. Recently,
drone-based approaches have demonstrated efficacy to detect and
expel birds that reduce crop yield, but on the other side, those
solutions are relatively high-cost options for farmers because
they require expensive devices such as desktop-level computers
and autonomous drones. This paper proposes a maintenance-
free, energy-efficient, and low-cost smart raven deterrent system
with edge computing, which runs completely standalone and self-
sustainable. In particular, a tiny convolutional neural network has
been proposed and optimized for multi-core microcontrollers.
To demonstrate the effectiveness of the system and the neural
network, the paper presents a developed prototype system with
a novel hexa-core ARM Cortex-M4F platform, namely Spresense
from Sony. The evaluation results show that the prototype
system obtains a detection accuracy of 77% for test samples
and consumes an average power of 85.1 mW.

Index Terms—Smart agriculture, edge computing, tiny ma-
chine learning, embedded systems

I. INTRODUCTION

With the growth of the Internet of Things (IoT) market,
smart farming has been becoming a more promising option for
large-scale farms [1]–[3]. Smart farming can help to increase
crop yield and reduce operating costs by automating expensive
and tedious tasks. One application of smart farming is a bird
deterrent system, which is to expel birds such as ravens that
may damage crops in large fields. Birds, especially ravens in
Switzerland [4], are known to be troublesome in farms because
they can cause a substantial reduction in crop yield [4]–
[7]. Without a smart automation system, farmers have to
continuously monitor their fields and manually deter birds
from eating the crops.

Recently, drone-based approaches have been proposed to
expel birds from areas that need protection [8]–[10]. For exam-
ple, Schiano et al. [8] present a pigeon deterrent system, which
detects birds using computer vision and directs a drone to
the location of the birds. The existing drone-based approaches
have shown that a bird deterrent system can materialize in a
more intelligent way with autonomous drones. However, the
existing approaches are relatively costly for farmers to install
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and maintain the system because they require autonomous
drones controlled by a base station, not easily manageable
without the help of experts.

For a smart farming system to be attractive, the system
should be low-cost and low-maintenance without loosing its
intelligence. Tiny machine learning, which aims to process
machine learning algorithms on small embedded devices, can
be one applicable technology for the objective. With tiny
machine learning techniques [11]–[13], the system can run
a smart application without offloading computations to a re-
mote machine. Furthermore, energy harvesting, the technology
to gather energy from environmental sources, can enable a
maintenance-free system [14] by removing the necessity for
battery replacement or the possibility of disruption.

In this paper, we propose a low-cost and low-power smart
raven deterrent system with tiny machine learning. First,
the proposed system is completely standalone so it does
not require neither a base station nor a remote server for
computation. This paper proposes a tiny neural network model
that exploits audio signals from a microphone for accurate
raven detection. The model is trained with an open dataset
and optimized for a low-power multi-core microcontroller. In
addition, the proposed system is self-sustainable with energy
harvesting, minimizing the maintenance cost. Thus, the system
can be installed and maintained by non-experts, so the system
is easily applicable for smart farming.

To demonstrate the effectiveness of the system, we designed
and developed a prototype raven deterrent system with a novel
low-power hexa-core microcontroller, Sony Spresense [15].
In the prototype system, a microphone is attached to the
microcontroller for the tiny neural network model as well as
a solar energy harvesting module. We evaluated the prototype
system in terms of detection accuracy and analyzed the power
consumption of the system. The evaluation results show that
the prototype system can provide accurate audio-based raven
detection with an average power consumption of 85.1mW.

The contributions of this work are:
• Hardware and software design of an edge node for energy

efficient smart raven deterrence
• Optimization of deep neural network execution for effi-

cient neural network inference on the edge
• Development and evaluation of the prototype of the raven

deterrent system
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Fig. 1: Overview of the system.

II. SYSTEM OVERVIEW

This paper presents a self-sustainable smart raven deterrent
system with a multi-core microcontroller.

A. Hardware

The raven deterrent system consists of a multi-core micro-
controller with a microphone for real-time raven detection.
In the prototype of the raven deterrent system, we use the
Sony Spresence development board (CXD5602) [15], which
includes six ARM Cortex-M4F cores with 1.5 megabytes of
main memory. By exploiting the multiple cores, the node can
process audio signals and run a raven detection algorithm in
real time. Additionally, the system uses a speaker to create
a sound to expel ravens when they are detected. For self-
sustainability, the raven deterrent system is equipped with an
energy harvesting module (e.g., a solar charger with a solar
panel) and charges its battery with the module.

B. Software

The raven deterrent system performs the following tasks at
regular intervals as illustrated in Fig. 1:

(i) Data Acquisition: Sample audio signals from its
microphone over a defined sampling window.

(ii) Preprocessing: Perform Mel-frequency Cepstral
Coefficient (MFCC) feature extraction on the raw audio
data for neural network inference.

(iii) Inference: Execute the neural network model with
the extracted features.

(iv) Actuation: Play an alarming sound with speakers to
deter ravens if the model detects a raven sound from the
audio signals.

(v) Sleep: Go into a sleep mode to preserve energy. The
duration of sleep depends on the energy availability of
the system.

III. INFERENCE ON THE EDGE

A. Feature Extraction

To facilitate the inference of the neural network, the system
first processes raw audio signals from the microphone. Since
raw audio signals are relatively large and sparse, it is inefficient
to use the raw audio signals as the input of the neural network
for both training and testing. Therefore, the system extracts
distinct features from the raw audio signals and feeds them to
the network for detecting the raven sound.

In the preprocessing step, the system calculates the
mel-frequency cepstral coefficients (MFCC) [16] of raw audio
signals. MFCC is one of the most widely-used representations
of audio signals. However, MFCC extraction may be compu-
tationally expensive for embedded processors. For example,
MFCC extraction requires Fourier transforms of audio frames
with floating-point numbers. To reduce the computational bur-
den, the system applies Fast Fourier transform (FFT) instead
of Short Time Fourier transform (STFT), which is normally
used in MFCC extraction.
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Fig. 2: Visualization of MFCCs from sample sounds.

Fig. 2 visualizes the MFCCs of sample raven and non-
raven sounds. Fig. 2b shows the pattern of the raven sound,
which is distinguishable from the non-raven sound. With the
distinct pattern, the neural network can predict whether the
audio recorded with the microphone includes a raven call or
not.

B. Network Architecture

The proposed system uses a tiny convolutional neural net-
work for audio-based raven detection. Table I summarizes
the architecture of the neural network model. Note that batch
normalization is applied after every convolution. The input of
the model is the features extracted from single-channel audio
signals (i.e., MFCCs of the audio signals), of which shape is
(Nf , Nm, 1) where Nf is the number of audio frames and Nm

is the number of cepstral coefficients. The output of the model
is the probability that a raven call is in the audio, of which
shape is (2).

The total number of parameters of the model is 19,796.
When deployed with TensorFlow Lite Micro (TFLM) [17],
the binary size of the model is 84.892 kilobytes and the peak
memory footprint of the model is 14.336 kilobytes, with 32
audio frames and 13 cepstral coefficients.



TABLE I: Network Architecture (N : Batch Size)

Type Kernel Strides Activation Output Dim.
Convolution 3× 3 1× 1 ReLU (N, 32, 13, 3)
Convolution 3× 3 2× 2 ReLU (N, 16, 7, 16)
Max pooling 2× 2 1× 1 - (N, 8, 3, 16)
Convolution 3× 3 2× 2 ReLU (N, 4, 2, 32)
Max pooling 2× 2 1× 1 - (N, 2, 1, 32)
Convolution 3× 3 2× 2 ReLU (N, 1, 1, 48)
Dense - - Linear (N, 8)
Dense - - Softmax (N, 2)

C. Optimizations

As an optimization, matrix multiplication algorithms are
parallelized, which are the main computations of neural net-
works, to exploit multiple cores of the processing unit. For our
prototype system, we modified the CMSIS-NN library [18],
which provides the optimized neural network kernels for ARM
processors, with DOALL parallelism. Additionally, model
compression techniques such as quantization [11] are applied
to further improve the performance of the network.

IV. PROTOTYPE OF RAVEN DETERRENT SYSTEM

A. Hardware

The prototype raven deterrent system is built with a hexa-
core Spresence development board (CXD5602) [15] from
Sony as its main computational unit; an analog Electret micro-
phone (100 Hz – 10 kHz) with a 60× microphone preamplifier
BOB-12758 [19] for raw audio sampling; an ANYSOLAR
IXOLAR solar module SM641K10L [20] as the main source
of energy; a SparkFun Sunny Buddy solar charger [21] with
the maximum power point tracking capability, to maximize the
energy harvesting yield; a single cell 3.7V Renata lithium-
ion ICP303450PA-02 battery [22]. Fig. 3 shows the prototype
raven deterrent system with a 3D-printed case.

B. Software

Network Training: For the prototype system, the neural
network described in Section III is trained with the Xeno
Canto [23] database, which provides more than 700,000 bird
sounds organized by species, location of recording, and etc.
The train and test data is acquired by querying and download-
ing all the samples of Corvus with a web scraper. In total,
6,194 audio recordings were obtained for the raven class from
the database. For the background class, 8,000 samples from
the warblrb10k [24] dataset were taken. The dataset consists
of various background noises such as weather sounds, human
speech, and even bird imitations.

With the train and test data, the model is trained for 10
epochs with the Adam optimizer and the learning rate of 1e-4
on a desktop computer using TensorFlow [25]. During training,
white noise is randomly mixed with original audio samples as
a data augmentation. After training, the model is optimized
and saved as an 8-bit integer TensorFlow Lite model using
TensorFlow Lite Interpreter for the deployment to the target
hardware platform.

(a) Exterior (b) Hardware Components

Fig. 3: Prototype of the raven deterrent system.

Implementation: The entire software pipeline is imple-
mented in Arduino programming language with Spresense and
TensorFlow Lite Arduino libraries. In more detail, Audio
API is used for audio recording and LowPower API is
used for deep sleep, provided by the Spresense Arduino
library. For example, the system can change its clock mode
using the LowPower.clockMode(mode) method where
the mode parameter can be either CLOCK_MODE_156MHz,
CLOCK_MODE_32MHz, or CLOCK_MODE_8MHz.

Implementation of MFCC feature extraction is based on an
open-source implementation from ARM [26]. The parameters
of the original implementation are modified to generate the
correct MFCCs for the trained network.

V. EVALUATION

A. Experimental Setup

This paper evaluates the prototype raven deterrent system
in terms of raven detection accuracy and power consumption.
To evaluate the raven detection accuracy together with the
hardware (e.g., microphone), test audio samples are played on
a separate host computer. For 50 times, different raven sounds
are played to check if the system can correctly identify ravens.
Then for another 50 times, non-raven sounds are played (10
times with silence, 10 times with rain sounds, 20 times with
sparrow sounds, and 10 times with farm background noises).

Regarding the self-sustainability evaluation, the prototype
raven deterrent system is profiled without the solar cells so
that the inference and sleep steps can be evaluated
separately. Then, Nordic NRF-PPK2 power profiler is attached
to the node instead of the battery of the raven deterrent system
to measure the energy consumption within a power resolution
of ±5 µW at 3.7V.

B. Raven Detection Accuracy and Latency

Table II shows the confusion matrix of the whole system on
unforeseen test audio samples. The table shows that the system
yields an overall accuracy of 77% for the 100 test samples. As
well as in Fig. 4, the precision-recall (PR) curve on the left
shows an average precision of 87% and the receiver operating
characteristic (ROC) curve on the right shows an Area under
the ROC Curve (AUC) of 84%.

The result demonstrates that the prototype system can detect
raven sounds with robustness towards microphone noise as
well as background environment noise. In addition, when the
system detects a raven sound, the prediction can be trusted
with the confidence of 87% even against other songbird



TABLE II: Confusion Matrix of Predictions

Prediction
Total: 100 raven: 35 no raven: 65

A
ct

ua
l raven: 50 31 19

no raven: 50 4 46

sounds. Therefore, the low false positive rate can avoid a
negative environmental impact on wildlife by not making
alarm sounds unnecessarily.

Lastly, we measure the latency of the neural network on the
multi-core microcontroller. The latency of the inference
step is 57.8ms on average, excluding the preprocessing
step which takes 253.9ms for 3-second long audio signal.
Hence, the inference and preprocessing steps take
311.7ms in total, as shown in Fig. 5a.

C. Power Profiling

The power consumption of the prototype system is profiled
and analyzed with the three time-consecutive phases:

i) Phase 1: This phase includes data acquisition from the
microphone, preprocessing with MFCC extraction, execu-
tion of the neural network, and actuation of the speaker.
This phase is the most power intensive among the three
phases. As shown in Fig. 5a, the prototype system has an
average power consumption of P1 = 144.2mW with a
duration of t1 = 12.9 s.

ii) Phase 2: In this phase, the system conserves energy by
shutting down all the subsystems in a deep sleep mode.
This phase is the least power intensive among the three
phases. As shown in Fig. 5b, the prototype system has
an average power consumption of P2 = 7.9mW where
t2 is set to 30 s in the measurement, though t2 can be set
to an arbitrary time.

iii) Phase 3: When rebooting the node, the system has to
restart and thus yields a power consumption to get the
system fully up and running again. This phase has to be
taken into account at every waking up from Phase 2 and
is accompanied with Phase 1. As in Fig. 5c, the node has
an average power consumption of P3 = 80.1mW with a
duration of t3 = 8.8 s.

D. Self-Sustainability Analysis

To estimate the perpetual work of the proposed system, a
brief discussion on the estimated solar power availability has
to be held.

With the system being meant to be used during spring and
summer in Switzerland, an estimate of the lowest accounted
solar radiation is 60Wm−2. This is derived using the data
provided by Swiss Meteo [27] in Zurich. Using the data of
April to September of the last two years, one can see that
the solar radiation threshold of 60Wm−2 is achieved nearly
at all times. An average of 189.9Wm−2 solar radiation was
measured. Further the mean hours of sunshine are determined
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Fig. 4: Left: Precision-recall curve of the neural network model
where the dashed line indicates the no-skill threshold. Right:
ROC curve of the neural network model.

to be 7h, this is derived by taking the mean daylight hours
per day from the past 5 years of the months April to August.
This results in a mean of 7.22h which we round down to 7h
and denote as tday [28].

The utilized 0.11m × 0.06m solar module has an efficiency
of 25% and a surface area of 6.993 × 10−3 m2 [20]. With
these values and the power consumption measured in the
different modes in Fig. 5, the energy harvested in a day
can be calculated as Eharv = 2620.7 J. During the night
the system is in Phase 2, during at which it consumes
Enight = 482.3 J. The resulting energy budget is therefore:
Eday = 2620.7 − 482.3 = 2138.4 J. Lastly, to calculate the
maximum possible duty cycle D of Phase 1 to Phase 2 within
the energy envelope, can be inferred by defining the following
definitions and conditions:

ton := t1 + t3

Pon :=
P1 · t1 + P3 · t3

t1 + t3
= 118.2mW

ttot := ton + t2

D :=
ton

ton + t2
=

ton
ttot

Lastly by solving for the duty cycle D:

Etot = ttot {D · Pon + (1−D) · P2}

=
ton
D

{D · Pon + (1−D) · P2}

!
=

ton
D · tday

· 2138.4 J

This results in D = 0.70 and consequently t2 = 9.3 s.
Hence, during the day, Phase 1 and Phase 3 can run at a
duty cycle of 70% and a period of t1 + t2 + t3 = 31 s and
be self-sustainable with the energy being harvested trough the
solar cell and harvesting module. This results in an average
power consumption of 85.1mW during the day.
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Fig. 5: Power profiles of the prototype system for each phase.

VI. CONCLUSION

This paper presents a self-sustaining, fully embedded raven
deterrent system for smart farming. The proposed system
leverages tiny machine learning for model deployment to a
multi-core microcontroller. By deploying the model to an
embedded system, we derive a solution that enables low-
cost, low-maintenance, and self-sustainability, which are the
key attributes pursued in smart farming. The prototype system
obtains 77% detection accuracy while consuming the average
power of 85.1mW.

Future work on this topic could address a more effective
deterrence mechanism. While the proposed system currently
deters ravens with a loud audio signal, ravens could be intelli-
gent enough to disassociate it with their actions of damaging
crop, albeit the targeted action. A possible solution to this
problem is to combine various existing bird deterrent methods
with the proposed raven deterrent system.
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schweiz,” 1999, [Online; accessed 4-July-2022]. [Online].
Available: https://www.weatheronline.de/weather/maps/city?FMM=
1&FYY=2016&LMM=12&LYY=2021&WMO=06660&CONT=euro&
REGION=0001&LAND=SW&ART=SON&R=0&NOREGION=0&
LEVEL=162&LANG=de&MOD=tab

https://proceedings.mlsys.org/paper/2021/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://arxiv.org/abs/1801.06601
https://www.sparkfun.com/products/12758
https://waf-e.dubudisk.com/anysolar.dubuplus.com/techsupport@anysolar.biz/O18AzrW/DubuDisk/www/Gen3/SM641K10L%20DATA%20SHEET%2020210127.pdf
https://waf-e.dubudisk.com/anysolar.dubuplus.com/techsupport@anysolar.biz/O18AzrW/DubuDisk/www/Gen3/SM641K10L%20DATA%20SHEET%2020210127.pdf
https://waf-e.dubudisk.com/anysolar.dubuplus.com/techsupport@anysolar.biz/O18AzrW/DubuDisk/www/Gen3/SM641K10L%20DATA%20SHEET%2020210127.pdf
https://www.sparkfun.com/products/12885
https://www.renata.com/en-ch/downloads/?product=icp303450pa-02&fileid=362eb77e217c713a5b0570752b
https://www.renata.com/en-ch/downloads/?product=icp303450pa-02&fileid=362eb77e217c713a5b0570752b
https://xeno-canto.org/
https://xeno-canto.org/
https://github.com/AgaMiko/Bird-recognition-review/blob/master/README.md#Datasets
https://github.com/AgaMiko/Bird-recognition-review/blob/master/README.md#Datasets
https://www.tensorflow.org/
https://github.com/ARM-software/ML-KWS-for-MCU
https://github.com/ARM-software/ML-KWS-for-MCU
https://www.meteoschweiz.admin.ch/home/messwerte.html?param=messwerte-globalstrahlung-10min&station=REH&chart=day
https://www.meteoschweiz.admin.ch/home/messwerte.html?param=messwerte-globalstrahlung-10min&station=REH&chart=day
https://www.meteoschweiz.admin.ch/home/messwerte.html?param=messwerte-globalstrahlung-10min&station=REH&chart=day
https://www.weatheronline.de/weather/maps/city?FMM=1&FYY=2016&LMM=12&LYY=2021&WMO=06660&CONT=euro&REGION=0001&LAND=SW&ART=SON&R=0&NOREGION=0&LEVEL=162&LANG=de&MOD=tab
https://www.weatheronline.de/weather/maps/city?FMM=1&FYY=2016&LMM=12&LYY=2021&WMO=06660&CONT=euro&REGION=0001&LAND=SW&ART=SON&R=0&NOREGION=0&LEVEL=162&LANG=de&MOD=tab
https://www.weatheronline.de/weather/maps/city?FMM=1&FYY=2016&LMM=12&LYY=2021&WMO=06660&CONT=euro&REGION=0001&LAND=SW&ART=SON&R=0&NOREGION=0&LEVEL=162&LANG=de&MOD=tab
https://www.weatheronline.de/weather/maps/city?FMM=1&FYY=2016&LMM=12&LYY=2021&WMO=06660&CONT=euro&REGION=0001&LAND=SW&ART=SON&R=0&NOREGION=0&LEVEL=162&LANG=de&MOD=tab

	Introduction
	System Overview
	Hardware
	Software

	Inference on the Edge
	Feature Extraction
	Network Architecture
	Optimizations

	Prototype of Raven Deterrent System
	Hardware
	Software

	Evaluation
	Experimental Setup
	Raven Detection Accuracy and Latency
	Power Profiling
	Self-Sustainability Analysis

	Conclusion
	References

